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1n this paper an investigation is made of the transient regimes which 
appear in the motion of an ionized, viscous gas between parallel, con- 
ducting planes in the presence of a transverse magnetic field. 

Questions of magneto~drodynamics relating to the nonstationary flow 
of an incompressible conducting medium have been the subject of numerous 
investigations in recent years. The first work along these lines was, 
apparently, the paper of Regirer [Xl, in which the transverse magnetic 
field is taken to be homogeneous, the walls of the channel non-conducting, 
and the motion is maintained by a longitudinal pressure drop. In this 
case, the velocity and the induced magnetic field each have only one com- 
ponent, in the direction of the applied pressure gradient, which depend 
on the transverse coordinate, and the magnetohydrodynamic equations re- 
duce to a linear system of equations of partial derivatives. The analo- 
gous problem for the case of moving walls was investigated in [21 (see 
also [31, in which the channel walls are taken to be perfectly conduct- 
ing). Quite recently a number of similar investigations have been 
published, of which we note the papers by Musin [41 and Yen and Chang 
[51. The problems considered were further developed in [61 and [Al, in 
which it was shown that there is an essential influence of the conduct- 
ivity of the walls on the nonstationary motion of the type considered. 

1. Statement of the problem. In all the investigations referred 
to above, it was assumed that the effect of the cyclotron frequency, o, 
of changed particles on the mean free time, T, between collisions is 
small, which made it possible to take the conductivity and viscosity to 
be scalar and to use the usual Ohm’s law. However, for sufficiently 
strong magnetic fields, or for a rarefied gas, the condition WT << 1 may 
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be violated, SO that it becomes necessary to use various complicated 

forms of Ohm's law [81. If it is assumed that the degree of ionization 

is small and that for the ions the relation @i~i cc.1 is satisfied, i.e. 

neglect any slip of the ions with respect to the gas, then the coeffi- 

cient of viscosity n can be taken to be scalar quantity, and Ohm's law 

may be introduced in the following form [8,9]: 

j + “K” -jxH =a(E+vxH) (1.1) 

where me is the electron cyclotron frequency, T* is the mean time between 
collisions of electrons with ions and neutral particles, o is the con- 

ductivity, j is the current density, I# and E are the magnetic and 

electric fields, v is the velocity of the medium. Under such conditions, 

the problem of flow in a plane channel remains linear (compressibility 

effects are neglected), but due to the inclusion of the Hall current the 

character of the transition regime becomes complicated, primarily because 
of the appearance of transverse currents and fields. 

In f91 the nonstationary motion of a weakly ionized gas was inveeti- 
gated for a plane channel, including anisotropic conductivity according 
to the scheme outlined above. the motion being produced by 8 steady, 
longitudinal pressure gradient. 

In the present paper an analogous flow of a viscous fluid between 

parallel walls is investigated, witb the assump- 
tion that along the X- and y-axes there are 
applied given pressure drops, Px( t) and Py( t), 

with a homogeneous magnetic field in a direction i 1 :j 1% 

perpendicular to the walls (Fig. 1). An exact 
solution of the problem, obtained for walls of P 
finite conductivity in the form of complex inte- :i3 

0 v v 
grals (Section 2). transforms to a simple, real P * 

form for the case of a weakly conducting medium -:;_ r 
(Section 3). It is shown that transient regimes 
of this type have the character of damped oscilla- Fig. 1. 

t ions, and the influence of viscosity on their 
form is investigated. For the flows investigated, there is a W%lit%tive 
difference between those with anisotropic conductivity and the ordinary 
isotropic case, for which the motion of a weakly conducting medium has %n 

aperiodic character. 

2. General solution of the problem. With the assumptions made, 

the system of ma~etohydrodyn~ic equations has the form 
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4na [g + (~0) H] = 4no (HV) v + AH + ‘G (rot H V) H - (HD) rot H] 

where p is the density, p the pressure, e and m the charge and mass of 

an electron (the CGSM system is adopted, with P = 1). 

It is not difficult to see that in the problem under consideration 

the velocity and induced magnetic field have directions parallel to the 

walls (z = ?r n) and depend only on the transverse coordinate z and time 

t. If the dimensionless quantities 

u=;, h+, 
0 

‘3 

!lu=+$, 0 
<=$, T=?f 

Rm = huv,a, 
eZZor* (2.2) 

P=,- M=H,aJ’?i&, R= f V”fl, 

(u. is some characteristic velocity) 

will be satisfied if solutions u,(<, 

can be found in the solution for the 

are introduced, then Equations (2.1) 

7), u,(<, T), hJS, T), q, T) 
system 

R ah, a’h, 
mar =F+Ba$+Rma$, 

R!&a~+$??$!+9 
(2.3) m Y 

R, Frg _ a2hu F-pa$+ R-2 

and the components of the pressure gradient are found from the relations 

- g = P,(t), - g = P, (t), - g = & !A$ (2.4) 

For the components of the electric field we have 

1 
% = R, 

ah, ah, 
PK$ag + ux 

eZ=uy~Z-u,hy-~~ 
E (2.5) 

2R, ag 9 
e=-----. 

VOHO 

After introducing the complex quantities 

7 

h,- ih, =cp, u,--iu,=f++- 
s q (W, q, - $, = q (2.6) 
0 

the basic system (2.3) can be written in the more compact form 

R af ?G= ap m 
“+p& Rmz=(I+iP) $+Rrng (2.7) 

Applying a Laplace transformation to (2.71, with zero initial 
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conditions, and using the notation 

52 (5, p) = f)w (5, r) e-pr& 
0 

(2.8) 

we obtain the system 

the general solution of which can be written, for the symmetric case 
under consideration, in the form 

t’ = - -& (A,-~15 + A,way,C) (2*10) 

@= - a [Al (Rp - y12)+!+ + A, (Rp - yg2)ff+] (2.11) 

The quantities A, and A, have to be found from the boundary condi- 
tions on the channel walls, consisting of, first, equality of the velo- 
city of the medium with the velocity of the planes bounding it, and, 
second, the requirement that the tangential components of the electric 
and magnetic fields be continuous from the gas into the wall. To simplify 
the results in what follows, the planes t = + a are taken to be station- 

ary, so that one of the boundary conditions has the form 

F/c=1 = - -$ (2.12) 

To obtain the second condition it is necessary to investigate 
flaxwell’s equations in the region 5 > 1, which, 
formation, have the form 

da,* 
- = Rm* (Ev* + iEx*), 

4 

(displacement currents are neglected, the index 
in the walls). Solving these equations with the 
fields be bounded for 5 - m, we find a relation 
magnetic fields, 

after Laplace trans- 

+ ii!&“) = pm* (2.13) 

* refers to the region 
condition that the 
between the electric and 

(5 > 1) (2.14) 

Taking account of the continuity of the quantities E,, E, and Q’, as 
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well as Equations (2.5)) we obtain the second boundary condition 

(a = 1 + ib) (2.15) 

Putting (2.10) in (2.12) and (2.15), and solving the resulting 
algebraic system, we find 

(2.16) 

RP - 71s - 
71 aab Yad Yl 1 

Thus, the general solution of the problem posed is given by the 

following complex integrals: 
t b+ico 

ux- 1 WW+& \ JXp~expMW~ 

0 b&o (2.17) . 
b+iw 

4x- ih, = & 
5 Q (5, PI exp W dp 

b-h 
where the functions under the integrals are determined from Equations 
(2.10) and (2.16). 

For UT+ = 0 (a = 
conductivity r6] . 

1) the solution corresponds to flow with isotropic 

The solution obtained can be put into real form by representing the 
complex integrals (2.17) as the sum of residues at the poles correspond- 
ing to the roots of the equation D(p) = 0, together with the integral 
over Re p < 0. Im p = 0, which must be carried out in the presence of a 

branch point, at p = 0. The boundary value problems of mathematical 
physics which correspond to the case under consideration have, as in the 

isotropic case [Al, a mixed spectrum of eigenvalues. 

In view of the complexity of the indicated computations, we investigate 

in the following only the particular case when the conductivity of the 

gas is not large. 

3. Case of a weakly conducting gas. Let us assume that the con- 
ductivity of the gas u is small compared to the conductivity of the 
walls o* and, in addition, the viscous Reynolds number is considerably 
greater than the magnetic Reynolds number. Assuming that the conditions 
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are satisfied, expanding the exact solution in a power series of small 
parameters and taking only the first terms, we obtain an approximate 
solution of the problem in the form of complex integrals having the 
foll owing form: 

The integrals may be evaluated, for arbitrary time dependence of the 
pressure gradient Q(S), with the help of the convolution theorem. 

For example, we have for the velocity of the medium 

? 

IA., - iu, = 
1 ‘4 (z - u) 0 (u) du (3.3) 
0 

where the function 

b&co 

b-i% 

(34 

is easily found with the help of the theorem of residues 

Further computations will be carried out under the assumption that a 
steady pressure gradient P is imposed in the x-direction. Inasmuch as 

q (q = $$. zz q = const 

therefore 

@CI (- 1)” co.5 h,C 
nx 

- iuU = 2!I ezO a, (A,2 + $“!) 
. (1 - exp[ - (h2.f f)G]} 

Swing the series by means of the formula 

(3.G) 

(3.7) 

we obtain the following expression 
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ur - iu, = -+@f5/ v-1+ iPI 
-vf161+ - 1 

R(l”;ia) 2 ~na[~,P+~S/(l+i~)JeXP I 
00 (- l)n cos lL& 

(-g) (3.8) 
IZ=lJ 

the first term of which represents the stationary regime of the flow 
under consideration, and previously found in [lo_! . 

Similar relations can also be found for the induced magnetic fields. 

An investigation of expression (3.5) shows that, for J3 # 0 (aniso- 
tropic conductivity), the transient regime will contain a periodic func- 
tion of time with frequency M2p/ll(l + p2), while for p = 0 (isotropic 
conductivity) the approach to the stationary state has an aperiodic 
character. 

Figure 2 shows the values of the gas flow Wz and iYY in the x- and y- 
directions, compared to the corresponding stationary values IYzo and W,“, 
and computed from the relations 

where 

Here the notation is 

(3.9) 

(3.10) 

(3.11) 

Computations were carried out for two values of the Hartmann number, 
M = 5 and ill = 10, with the anisotropy parameter p being taken as 3. Also 
shown on Fig. 2 are the results for the case ill = a, corresponding to the 
flow of an inviscid gas; in that case Equations (3.9) go over to the cor- 
responding equations of [9]. 

‘Ihe numerical results obtained clearly illustrate the influence of 
viscosity on the form of the damped oscillations comprising the transient 



X%girne : the first maxima of ampjlitude are reached for the same values of 

mime, but their m~~i~ude decreases with iacreasing ~~~~~~~~~~t of 

viscosity; the latter affect is particularly significant for the dis- 

charge in the direc%ian of the applied pressure gradient, 
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